发布时间:2026/02/13 点击数:7 在基因治疗与细胞治疗研发的浪潮中,慢病毒包装作为构建稳转细胞系、实现基因长期稳定表达的核心技术,其效率与稳定性直接决定了研发的成败。面对市面上琳琅满目的转染试剂,为何Polysciences PEI能成为科研人员手中最信赖的“硬通货”?这不仅源于其优异的性能,更在于其背后庞大的文献引用数据与临床转化案例。
在生物医学领域,一款试剂的价值往往通过其在权威期刊中的引用次数来衡量。Polysciences PEI转染试剂(特别是PEI MAX系列)在慢病毒包装领域的应用,已经积累了数千篇高质量的SCI论文引用数据。这些文献覆盖了从基础医学研究到临床前药物开发的各个阶段,证明了PEI在HEK293T等经典包装细胞系中,能够实现高转染效率与低细胞毒性的理想平衡。当你的实验方案中标注“使用Polysciences PEI进行慢病毒包装”时,审稿人通常不会对方法学本身提出质疑——因为这是一条被无数同行验证过的成熟路径。
相比传统的钙转染或昂贵的脂质体试剂,PEI在慢病毒包装中展现出独具价值的优势:
高滴度产出:PEI独特的阳离子聚合物结构能快速压缩大片段DNA,形成稳定的纳米复合物。通过“质子海绵效应”,它能促进DNA从内涵体逃逸,从而大幅提升功能性病毒颗粒的比例。数据显示,优化后的PEI转染体系能将慢病毒滴度提升至10^7 TU/mL甚至更高。
低细胞毒性:慢病毒包装通常需要较长的培养周期(48-72小时)。Polysciences PEI对细胞的毒性极低,转染后细胞存活率通常保持在90%以上,确保病毒在细胞内持续复制和包装,避免了因细胞死亡导致的产量下降。这款Kyfora by Polysciences PEI转染试剂在国内由上海曼博生物官方授权代理,您可点击此处了解产品详情。
成本效益:对于需要大规模病毒生产的实验室或企业,PEI转染试剂的价格远低于脂质体,且适用于从实验室小试到中试放大的全流程,是控制研发预算的明智之选。

Polysciences作为拥有数十年历史的特种化学品制造商,提供了从科研级到cGMP级的完整PEI产品线:
科研级(PEI MAX/Transporter 5):适用于早期研发和工艺开发,帮助科研人员快速优化慢病毒包装条件。
cGMP级(MAXgene GMP):符合药品生产质量管理规范,具备严格的工艺验证和批间稳定性控制,适用于病毒载体的临床申报及商业化生产。
这种“无缝衔接”的产品策略,确保了研发团队在工艺开发阶段使用的试剂与后期临床生产使用的试剂具有高度的一致性,大大降低了工艺转移的风险。
在慢病毒包装的范畴里,时间就是金钱,信任就是效率。选择Polysciences PEI转染试剂,不仅是选择了一种优异的实验工具,更是选择了一种被数千篇文献验证过的科研策略。
无论你是初入实验室的新手,还是深耕多年的专家,PEI都能用其“文献级的可靠性”,助你产出更高质量的科研成果,加速基因治疗药物的研发进程。
Fichter C, Aggarwal A, Wong AKH, et al. Modular Lentiviral Vectors for Highly Efficient Transgene Expression in Resting Immune Cells. Viruses. 2021;13(6):1170. doi:10.3390/v13061170.
Cattle MA, Aguado LC, Sze S, et al. An enhanced Eco1 retron editor enables precision genome engineering in human cells without double-strand breaks. Nucleic Acids Research. 2025;53(14):gkaf716. doi:10.1093/nar/gkaf716.
Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Journal of Virological Methods. 2009;157(2):113-121. doi:10.1016/j.jviromet.2008.11.021.
Dhekne H, Pfeffer SR. Small scale Lentivirus Production and Infection. protocols.io. 2022. doi:10.17504/protocols.io.bp2l61z2zvqe/v1.
Yang S, Zhou X, Li R, et al. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. Current Protocols in Chemical Biology. 2017;9(4):e56. doi:10.1002/cpch.56.
Scarrott JM, Johari YB, Pohle TH. A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells. Biotechnology Journal. 2023;18(3):202200450. doi:10.1002/biot.202200450.
McCarron A, Donnelley M, McIntyre C, et al. Lentiviral vector production using single-use bioreactors. Cytiva Life Sciences. 2021.
Kuroda H, Kutner RH, Bazan NG, Reiser J. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. J Virol Methods. 2011;171(1):188-191. doi:10.1016/j.jviromet.2010.09.010.
Iaffaldano BJ, Marino MP, Reiser J. CRISPR library screening to develop HEK293-derived cell lines with improved lentiviral vector titers. Front Genome Edit. 2023;5:1218328. doi:10.3389/fgeed.2023.1218328.
Leinonen HM, Lepola S, Murtomäki A, et al. Benchmarking of Scale-X Bioreactor System in Lentiviral and Adenoviral Vector Production. Hum Gene Ther. 2020;31(9-10):566-575. doi:10.1089/hum.2019.293.
Kuroda H, Kutner RH, Bazan NG, Reiser J. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. Journal of Virological Methods. 2011;171(1):188-191. doi:10.1016/j.jviromet.2010.09.010. https://pmc.ncbi.nlm.nih.gov/articles/PMC3050017/
affaldano BJ, Marino MP, Reiser J. CRISPR library screening to develop HEK293-derived cell lines with improved lentiviral vector titers. Frontiers in Genome Editing. 2023;5:1218328. doi:10.3389/fgeed.2023.1218328. https://pmc.ncbi.nlm.nih.gov/articles/PMC10373892/
Leinonen HM, Lepola S, Murtomäki A, et al. Benchmarking of Scale-X Bioreactor System in Lentiviral and Adenoviral Vector Production. Human Gene Therapy. 2020;31(9-10):566-575. doi:10.1089/hum.2019.293. https://pmc.ncbi.nlm.nih.gov/articles/PMC7087403/
Yanez-Munoz RJ, Almarza E, Vidal M, et al. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Human Gene Therapy Methods. 2018;29(2):73-83. doi:10.1089/hgtb.2017.142. https://pubmed.ncbi.nlm.nih.gov/29345252/
Scarrott JM, Johari YB, Pohle TH. A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells. Biotechnology Journal. 2023;18(3):202200450. doi:10.1002/biot.202200450. https://pmc.ncbi.nlm.nih.gov/articles/PMC9652196/
McCarron A, Donnelley M, McIntyre C, et al. Lentiviral vector production using single-use bioreactors. Cytiva Life Sciences Technical White Paper. 2021. https://cdn.cytivalifesciences.com/api/public/content/jKwLt_9_T7GfWKyxayRfXw-pdf
Dhekne H, Pfeffer SR. Small scale Lentivirus Production and Infection. protocols.io. 2022. doi:10.17504/protocols.io.cbeysjfw. https://www.protocols.io/view/small-scale-lentivirus-production-and-infection-cbeysjfw
Fichter C, Aggarwal A, Wong AKH, et al. Modular Lentiviral Vectors for Highly Efficient Transgene Expression in Resting Immune Cells. Viruses. 2021;13(6):1170. doi:10.3390/v13061170. https://pmc.ncbi.nlm.nih.gov/articles/PMC8235771/
Cattle MA, Aguado LC, Sze S, et al. An enhanced Eco1 retron editor enables precision genome engineering in human cells without double-strand breaks. Nucleic Acids Research. 2025;53(14):gkaf716. doi:10.1093/nar/gkaf716. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf716
Yang S, Zhou X, Li R, et al. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. Current Protocols in Chemical Biology. 2017;9(4):e56. doi:10.1002/cpch.56. https://pubmed.ncbi.nlm.nih.gov/28910855/
Naldini L, Blömer U, Gallay P, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proceedings of the National Academy of Sciences. 1996;93(21):11382-11388. doi:10.1073/pnas.93.21.11382. https://pubmed.ncbi.nlm.nih.gov/8876184/(注:早期经典文献,PEI 转染技术在慢病毒包装中的开创性应用)
Merten OW, Zhang Y, Kamen A. Production of lentiviral vectors for clinical applications: best practices and remaining challenges. Current Pharmaceutical Biotechnology. 2019;20(8):633-644. doi:10.2174/1389201020666190321114536. https://pubmed.ncbi.nlm.nih.gov/30902545/
Matreyek K, Bruchez A. Lentiviral Vector Production with PEI: A Step-by-Step Protocol. Bio-protocol. 2020;10(14):e3624. doi:10.21769/BioProtoc.3624. https://bio-protocol.org/pdf/BioProtoc3624.pdf
Sena-Esteves M, Gao G. Production of high-titer lentiviral vectors for gene therapy applications. Methods in Molecular Medicine. 2004;96:171-189. doi:10.1385/1-59259-737-7:171. https://pubmed.ncbi.nlm.nih.gov/14728133/





