发布时间:2026/02/11 点击数:15 在生物医学和生物技术领域,实验结果的稳健性往往取决于工具的选择。提到转染试剂PEI,许多科研人员都会将其视为一种经过长期实践验证的成熟工具。

Polysciences旗下Kyfora Bio的PEI转染试剂(如PEI MAX)在科研界拥有庞大的用户基础。据不完全统计,全球已有数万家实验室和众多生物技术公司选择使用这款PEI,相关应用案例可见于数万篇科研文献中。从基础研究到技术转化,从基因编辑到病毒载体包装,PEI的应用场景十分多元。
性能稳定:针对HEK293、CHO等常用细胞系,PEI转染试剂通常能提供较为稳定的转染效率,并保持较低的细胞毒性,有助于实验数据的重复性。
经济实用:相比部分高端脂质体试剂,PEI在成本和性能之间取得了较好的平衡,适合实验室进行规模化应用。
适用性广:无论是CRISPR基因编辑还是AAV病毒生产,PEI都能满足多样化的实验需求,简化实验流程。
当实验方案中采用PEI转染试剂时,这种成熟的技术路径通常更容易被同行理解和接受。Kyfora by Polysciences的PEI作为一种科研工具,其价值体现在:
助力成果发表:使用经过丰富文献验证的方法,有助于减少审稿人对实验技术路线的疑虑。
提升实验效率:稳定的性能可以减少实验条件的反复摸索,让科研人员更专注于科学问题的研究。
优化资源配置:在保证实验效果的前提下,有助于实验室更合理地规划科研经费。
在生物医学和生物技术领域,选择可靠的供应商与选择可靠的试剂同等重要。Polysciences及其旗下品牌Kyfora Bio在中国区的官方授权代理商(点击查看详情)——上海曼博生物医药有限公司,正是连接全球前沿技术与国内科研用户的重要桥梁。
作为Polysciences在中国市场的长期战略合作伙伴,上海曼博生物建立了完善的售前、售中、售后服务体系以及重组的国内库存。其技术团队具备丰富的产品应用经验,能够针对不同细胞系(如HEK293、CHO等)的转染难题,提供专业的技术支持与优化方案,协助客户解决实验过程中遇到的实际问题。
在科研工作中,选择可靠的工具十分关键。Kyfora by Polysciences的PEI转染试剂,凭借其在全球科研界积累的多数应用案例,为研究人员提供了一种成熟、稳定且经济实用的技术选择。无论您是初入实验室的新手,还是经验丰富的研究者,这款PEI都能为您的科研工作提供有力的支持。

选择上海曼博生物,意味着您购买的每一支PEI转染试剂都享有原厂质保与代理商的专业服务,实现“正品无忧、售后无忧”,让您能更专注于科研本身,解除后顾之忧。
Huang Y, Hartley O, Afione SA, et al. AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications. Journal of Virological Methods. 2013;193(2):270-277. doi:10.1016/j.jviromet.2013.06.008.
Sigma-Aldrich. Development of a Novel Cell Culture Medium for AAV Production With Multiple HEK293 Lineages and Process Optimization. Technical Document. 2026.
Lu M, Lee Z, Hu WS. Multi-omics kinetic analysis of recombinant adeno-associated virus production by plasmid transfection of HEK293 cells. Biotechnology Progress. 2024;40(2):e3428. doi:10.1002/btpr.3428.
Comprehensive transient transfection process optimization to improve AAV productivity by tackling PEI induced ROS and thus reducing cytotoxicity. ACS Synthetic Biology Conference Proceedings. 2023.
Lock M, Chen J, et al. Rapid, Simple and Versatile Manufacturing of Recombinant Adeno-Associated Virus Vectors at Scale. ResearchGate. 2007.
Hsu SH, Hwang KC, Lin YC, et al. Biocompatibility and efficacy of oligomaltose-grafted poly(ethylene imine)s (OM-PEIs) for in vivo gene delivery. Journal of Biomedical Materials Research Part A. 2014;102(1):209-218. doi:10.1002/jbm.a.34720.
Stuible M, Gervais C, Lord-Dufour S, et al. Rapid, high-yield production of full-length SARS-CoV-2 spike ectodomain by transient gene expression in CHO cells. Journal of Biotechnology. 2021;328:21-27. doi:10.1016/j.jbiotec.2020.12.005.
Bausch D, Luginbühl P, Ruppen I, et al. Cost-Effective Protein Production in CHO Cells Following Polyethylenimine-Mediated Gene Delivery Showcased by the Production and Crystallization of Antibody Fabs. Antibodies. 2023;12(3):51. doi:10.3390/antib12030051.
Fang XT, Sehlin D, Lannfelt L, Syvänen S, Hultqvist G. Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells. Biological Procedures Online. 2017;19(1):11. doi:10.1186/s12575-017-0060-7.
Li R, Secombes CJ, Zou J. Transient transfection of CHO cells using linear polyethylenimine is a simple and effective means of producing rainbow trout recombinant IFN-γ protein. Cytotechnology. 2015;67(6):987-993. doi:10.1007/s10616-014-9737-9.
Zhou J, Yan GG, Cluckey D, et al. Exploring Parametric and Mechanistic Differences between Expi293F™ and ExpiCHO-S™ Cells for Transient Antibody Production Optimization. Antibodies. 2023;12(3):53. doi:10.3390/antib12030053.
Ozturk S, Zhou J, Kamen A. Influence of glutamine on transient and stable recombinant protein production in CHO and HEK-293 cells. Biotechnology and Bioengineering. 2009;102(5):1434-1443. doi:10.1002/bit.22932.
Durocher Y, Perret S, Kamen A. Transfection of HEK293-EBNA1 Cells in Suspension with Linear PEI for Production of Recombinant Proteins. Nucleic Acids Research. 2002;30(2):E9. doi:10.1093/nar/30.2.e9.
Fichter C, Aggarwal A, Wong AKH, et al. Modular Lentiviral Vectors for Highly Efficient Transgene Expression in Resting Immune Cells. Viruses. 2021;13(6):1170. doi:10.3390/v13061170.
Cattle MA, Aguado LC, Sze S, et al. An enhanced Eco1 retron editor enables precision genome engineering in human cells without double-strand breaks. Nucleic Acids Research. 2025;53(14):gkaf716. doi:10.1093/nar/gkaf716.
Kuroda H, Kutner RH, Bazan NG, Reiser J. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Journal of Virological Methods. 2009;157(2):113-121. doi:10.1016/j.jviromet.2008.11.021.
Dhekne H, Pfeffer SR. Small scale Lentivirus Production and Infection. protocols.io. 2022. doi:10.17504/protocols.io.bp2l61z2zvqe/v1.
Yang S, Zhou X, Li R, et al. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. Current Protocols in Chemical Biology. 2017;9(4):e56. doi:10.1002/cpch.56.
A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells. Biotechnology Journal. 2023;18(3):202200450. doi:10.1002/biot.202200450.
McCarron A, Donnelley M, McIntyre C, et al. Lentiviral vector production using single-use bioreactors. Cytiva Life Sciences. 2021.





